Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(3)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507802

RESUMO

3D bioprinting has the potential for the rapid and precise engineering of hydrogel constructs that can mimic the structural and optical complexity of a healthy cornea. However, the use of existing light-activated bioinks for corneal printing is limited by their poor cytocompatibility, use of cytotoxic photoinitiators (PIs), low photo-crosslinking efficiency, and opaque/colored surface of the printed material. Herein, we report a fast-curable, non-cytotoxic, optically transparent bioprinting system using a new water-soluble benzoyl phosphinate-based PI and photocrosslinkable methacrylated hyaluronic acid (HAMA). Compared with commercially available PIs, the newly developed PI, lithium benzoyl (phenyl) phosphinate (BP), demonstrated increased photoinitiation efficiency under visible light and low cytotoxicity. Using a catalytic amount of BP, the HA-based bioinks quickly formed 3D hydrogel constructs under low-energy visible-light irradiation (405 nm, <1 J cm-2). The mechanical properties and printability of photocurable bioinks were further improved by blending low (10 kDa) and high (100 kDa) molecular weight (MW) HAMA by forming multilength networks. For potential applications as corneal scaffolds, stromal cell-laden dome-shaped constructs were fabricated using MW-blended HAMA/BP bioink and a digital light processing printer. The HA-based photocurable bioinks exhibited good cytocompatibility (80%-95%), fast curing kinetics (<5 s), and excellent optical transparency (>90% in the visible range), potentially making them suitable for corneal tissue engineering.


Assuntos
Bioimpressão , Tecidos Suporte , Tecidos Suporte/química , Impressão Tridimensional , Engenharia Tecidual , Córnea , Hidrogéis , Células Estromais , Luz
2.
Biomedicines ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540123

RESUMO

Wound dressings are widely used to protect wounds and promote healing. The water absorption and antifriction properties of dressings are important for regulating the moisture balance and reducing secondary damages during dressing changes. Herein, we developed a hyaluronic acid (HA)-based foam dressing prepared via the lyophilization of photocrosslinked HA hydrogels with high water absorption and antiadhesion properties. To fabricate the HA-based foam dressing (HA foam), the hydroxyl groups of the HA were modified with methacrylate groups, enabling rapid photocuring. The resulting photocured HA solution was freeze-dried to form a porous structure, enhancing its exudate absorption capacity. Compared with conventional biopolymer-based foam dressings, this HA foam exhibited superior water absorption and antifriction properties. To assess the wound-healing potential of HA foam, animal experiments involving SD rats were conducted. Full-thickness defects measuring 2 × 2 cm2 were created on the skin of 36 rats, divided into four groups with 9 individuals each. The groups were treated with gauze, HA foam, CollaDerm®, and CollaHeal® Plus, respectively. The rats were closely monitored for a period of 24 days. In vivo testing demonstrated that the HA foam facilitated wound healing without causing inflammatory reactions and minimized secondary damages during dressing changes. This research presents a promising biocompatible foam wound dressing based on modified HA, which offers enhanced wound-healing capabilities and improved patient comfort and addresses the challenges associated with conventional dressings.

3.
Macromol Biosci ; : e2300359, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38011541

RESUMO

Cerebrospinal fluid (CSF) leakage is a common complication of intradural surgery or incidental durotomy in neurosurgery. Dural suturing is a common method for durotomy repair, but this technique requires a long operation time and includes the risk of CSF leakage by incomplete sealing. Glue-type sealants are effective for watertight dural closure. However, unresolved shortcomings include insufficient sealing performance, poor biocompatibility, and excessive swelling. Here, a dural sealant using light-activated hyaluronic acid (HA) with multi-networks (HA photosealant) that provides fast sealing performance and high biocompatibility is reported. The HA photosealants form a watertight hydrogel barrier with multilength networks under low-energy visible light exposure (405 nm, <1 J cm-2 ) for 5 s and allow firm tissue adhesion on the wet dural surface. In a rabbit model of craniectomy and durotomy, HA photosealants exhibit the faster sealing performance of dural tears and enhance dural repair with accelerated bone formation compared to commercial surgical glues, with no degenerative changes, such as inflammation or necrosis, in histopathological evaluation. This biocompatible HA photosealant can be applied in a variety of clinical settings that require fast wound closure as a promising potential.

4.
Pharmaceutics ; 15(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514152

RESUMO

Percutaneous drug delivery using microneedles (MNs) has been extensively exploited to increase the transdermal permeability of therapeutic drugs. However, it is difficult to control the precise dosage with existing MNs and they need to be attached for a long time, so a more simple and scalable method is required for accurate transdermal drug delivery. In this study, we developed grooved MNs that can be embedded into the skin by mechanical fracture following simple shear actuation. Grooved MNs are prepared from hyaluronic acid (HA), which is a highly biocompatible and biodegradable biopolymer. By adjusting the aspect ratio (length:diameter) of the MN and the position of the groove, the MN tip inserted into the skin can be easily broken by shear force. In addition, it was demonstrated that it is possible to deliver the desired amount of triamcinolone acetonide (TCA) for alopecia areata by controlling the position of the groove structure and the concentration of TCA loaded in the MN. It was also confirmed that the tip of the TCA MN can be accurately delivered into the skin with a high probability (98% or more) by fabricating an easy-to-operate applicator to provide adequate shear force. The grooved MN platform has proven to be able to load the desired amount of a drug and deliver it at the correct dose.

5.
Bioeng Transl Med ; 7(3): e10323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176623

RESUMO

Achieving fast and secure wound closure without ocular foreign body sensation is highly desired in ophthalmologic surgery. Sutureless approaches using tissue adhesives are gaining popularity, but their practical use is limited by the difficulty in controlling adhesion time and satisfying safety standards without compromising adhesive performance. Herein, we report user-demand hydrogel-forming ocular glues based on multilength photo-crosslinkable hyaluronic acid (HA), achieving firm tissue adhesion under wet and dynamic conditions and possessing cornea-like optical transparency. The HA-based photocurable glue (HA photoglue) quickly seals wounds upon nontoxic low-energy light exposure (320-500 nm, < 5 s, < 1 J cm-2), and its mechanical and adhesive properties are improved by introducing short and long crosslinkable moieties into HA through one-step synthesis, forming multilength networks. Furthermore, the HA photoglue provides stable sealing in wet environments like ocular mucous surface, a clear vision with a light transmittance of more than 95% over the entire visible range, and a lubricating surface with minimal ocular sensation (generating less than 10% frictional force than suture groups). In a rabbit corneal incision model, the HA photoglue showed improved wound healing efficacy based on histological evaluation compared to control groups.

6.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683896

RESUMO

The increased use of plastics has led to severe environmental pollution, particularly by microplastics-plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains. Despite potential negative effects, few toxicity assessments on microplastics are available. In this study, two sizes of polytetrafluoroethylene (PTFE) microplastics, approximately 5 µm and 10-50 µm, were manufactured and used for single and four-week repeated toxicity and pharmacokinetic studies. Toxicological effects were comprehensively evaluated with clinical signs, body weight, food and water consumption, necropsy findings, and histopathological and clinical-pathological examinations. Blood collected at 15, 30 60, and 120 min after a single administration of microplastics were analyzed by Raman spectroscopy. In the toxicity evaluation of single and four-week repeated oral administration of PTFE microplastics, no toxic changes were observed. Therefore, the lethal dose 50 (LD50) and no-observed-adverse-effect-level (NOAEL) of PTFE microplastics in ICR mice were established as 2000 mg/kg or more. PTFE microplastics were not detected in blood, so pharmacokinetic parameters could not be calculated. This study provides new insight into the long-term toxicity and pharmacokinetics of PTFE microplastics.

7.
Sci Adv ; 8(15): eabn1646, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427152

RESUMO

Wound healing is the dynamic tissue regeneration process replacing devitalized and missing tissue layers. With the development of photomedicine techniques in wound healing, safe and noninvasive photobiomodulation therapy is receiving attention. Effective wound management in photobiomodulation is challenged, however, by limited control of the geometrical mismatches on the injured skin surface. Here, adhesive hyaluronic acid-based gelatin nanofibrous membranes integrated with multiple light-emitting diode (LED) arrays are developed as a skin-attachable patch. The nanofibrous wound dressing is expected to mimic the three-dimensional structure of the extracellular matrix, and its adhesiveness allows tight coupling between the wound sites and the flexible LED patch. Experimental results demonstrate that our medical device accelerates the initial wound healing process by the synergetic effects of the wound dressing and LED irradiation. Our proposed technology promises progress for wound healing management and other biomedical applications.

8.
Vaccines (Basel) ; 10(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35455310

RESUMO

Smallpox is an acute contagious disease caused by the variola virus. According to WHO guidelines, the smallpox vaccine is administrated by scarification into the epidermis using a bifurcated needle moistened with a vaccine solution. However, this invasive vaccination method involving multiple skin punctures requires a special technique to inoculate, as well as a cold chain for storage and distribution of vaccine solutions containing a live virus. Here, we report a transcutaneous smallpox vaccination using a live vaccinia-coated microneedle (MN) patch prepared by a low-temperature multiple nanoliter-level dispensing system, enabling accurate transdermal delivery of live vaccines and maintenance of bioactivity. The live vaccinia in hyaluronic acid (HA) solutions was selectively coated on the solid MN tips, and the coating amount of the vaccine was precisely controlled through a programmed multiple dispensing process with high accuracy under low temperature conditions (2-8 °C) for smallpox vaccination. Inoculation of mice (BALB/C mouse) with the MN patch coated with the second-generation smallpox vaccine increased the neutralizing antibody titer and T cell immune response. Interestingly, the live vaccine-coated MN patch maintained viral titers at -20 °C for 4 weeks and elevated temperature (37 °C) for 1 week, highlighting improved storage stability of the live virus formulated into coated MN patches. This coated MN platform using contact dispensing technique provides a simple and effective method for smallpox vaccination.

9.
ACS Biomater Sci Eng ; 8(4): 1613-1622, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35245045

RESUMO

Stem cell therapies offer great promise in regenerative medicine to reinstate the normal function of diseased tissue, thereby avoiding the need for replacement. In stem cell therapies, damaged cells are replaced or restored by regulating inflammation and the immune system. However, the low survival rate and local retention of transplanted cells pose a significant challenge. In this study, injectable self-crosslinkable hydrogels using thiol-functionalized hyaluronic acid (HA-SH) were developed to improve the efficacy of mesenchymal stem cells (MSCs) for treating atopic dermatitis (AD)-related inflammatory lesions. The gelation kinetics and mechanical properties of HA-SH hydrogels were easily tuned by varying the concentration of the polymer in the precursor solution before injection. The MSC-laden HA-SH hydrogels exhibited high cell viability (>80%) for 1 week and good in vivo biocompatibility after implantation beneath the mouse skin. Moreover, the MSC-laden HA-SH hydrogel showed increased expression of anti-inflammatory cytokines, which can alleviate the immune response. In an AD animal model, a reduction in epidermal thickness and mast cell infiltration was achieved by applying a self-crosslinkable HA-SH solution including MSCs. This HA-based injectable hydrogel represents a potential carrier of stem cells, and its strong immunomodulation capabilities can be utilized for treating inflammation-related diseases.


Assuntos
Dermatite Atópica , Ácido Hialurônico , Animais , Terapia Baseada em Transplante de Células e Tecidos , Dermatite Atópica/terapia , Ácido Hialurônico/farmacologia , Hidrogéis , Inflamação , Camundongos
10.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160391

RESUMO

The production, use, and waste of plastics increased worldwide, which resulted in environmental pollution and a growing public health problem. In particular, microplastics have the potential to accumulate in humans and mammals through the food chain. However, the toxicity of microplastics is not well understood. In this study, we investigated the toxicity of 10-50 µm polyethylene microplastics following single- and 28-day repeated oral administration (three different doses of microplastics of 500, 1000, and 2000 mg/kg/day) in ICR mice. For the investigation, we administered the microplastics orally for single- and 28-day repeated. Then, the histological and clinical pathology evaluations of the rodents were performed to evaluation of the toxicity test, and Raman spectroscopy was used to directly confirm the presence of polyethylene microplastics. In the single oral dose toxicity experiments, there were no changes in body weight and necropsy of the microplastics-treated group compared with that of controls. However, a histopathological evaluation revealed that inflammation from foreign bodies was evident in the lung tissue from the 28-day repeated oral dose toxicity group. Moreover, polyethylene microplastics were detected in the lung, stomach, duodenum, ileum, and serum by Raman spectroscopy. Our results corroborated the findings of lung inflammation after repeated oral administration of polyethylene microplastics. This study provides evidence of microplastic-induced toxicity following repeated exposure to mice.

11.
Acta Biomater ; 143: 189-202, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35202857

RESUMO

Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine­threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.


Assuntos
Antineoplásicos , Minoxidil , Alopecia/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Ácido Hialurônico/farmacologia , Camundongos , Minoxidil/farmacologia , Minoxidil/uso terapêutico
12.
Materials (Basel) ; 14(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683648

RESUMO

With increasing demands on long-term storage of cells, cryopreservation of cells is gaining more importance in cell-based research and applications. Dimethyl sulfoxide (DMSO) is a commonly used chemical cryoprotectant, providing increased cell survival during the freezing process. However, its use is limited in clinical applications due to its low biocompatibility above cryogenic temperatures. Herein, we present a new approach for reducing the use of DMSO in cryopreservation by using biodegradable hyaluronic acids (HAs). By adding HAs into cryoprotectant media containing a low concentration of DMSO, higher cell viability and cell proliferation rate were observed upon thawing after cryopreservation. The HA-supplemented cryopreservation media did not reduce the size of the ice crystal, which significantly influenced cell viability during cell freezing, but decreased the Ras homolog family member A (RhoA)/Rho-associated protein kinase (ROCK) signaling pathway related to apoptosis. The cell-interactive cryoprotectants containing HA can be applied to the development of a new cryoprotectant that reduces the adverse effect of DMSO.

13.
RSC Adv ; 11(17): 10393-10399, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423503

RESUMO

Recently, a variety of tumor vaccines and immune system stimulators such as toll-like receptor (TLR) agonists have been widely investigated for cancer immunotherapy via transdermal delivery. Despite these great research efforts, low efficiency and discomfort remain a huge technical hurdle for the development of immunotherapeutics. Here, we design a facile method to deliver drugs to the skin through microneedles (MNs) to stimulate the immune system in two ways. As one of the tumor vaccines, cancer cell membrane proteins can act as tumor-specific antigens that are presented to antigen presenting cells (APCs) to activate the immune system. In addition, a toll-like receptor 7 (TLR7) agonist of imiquimod (R837) can suppress cancer cell growth by inhibiting angiogenesis. Using poloxamer 407 (F127) as a nanocarrier, F127 nanoparticles (F127 NPs) are loaded with R837 and then coated with cancer cell membranes (M). These F127-R837@M NPs are loaded in rapidly dissolving MNs and delivered through the skin. MNs loaded with F127-R837@M NPs show significant inhibition of cancer cell growth in both prophylactic vaccination and antitumor immunotherapy in vivo. The dual immune system stimulating F127-R837@M NPs could be effectively used for cancer immunotherapy.

14.
Biosens Bioelectron ; 163: 112281, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568694

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity and mortality worldwide. Painful blood-collection procedures or low accuracy of non-invasive approaches require faster, patient-friendly, and more sensitive diagnostic technologies. Here we report a painless, highly sensitive detection platform using nanoporous microneedles (nMNs) that enables rapid capture of biomarkers present at sub-nanogram levels. The highly porous nanostructures on the nMN surface were prepared by anodization of aluminum MN and then functionalized by immobilization of capture antibodies to detect target biomarkers based on an immunoassay method. The immuno-functionalized nMN array demonstrated rapid capture of an estrogen (E2) biomarker for PE following a 1-min incubation and exhibited a concentration-dependent change in fluorescence intensity over the E2 range of 0.5 ng mL-1 to 1000 ng mL-1 after treatment with fluorescence-detection antibodies. Remarkably, the nMN patch selectively detected sub-nanogram-levels of E2 in subcutaneous interstitial fluid from rats with increased diagnostic accuracy as compared with commercial immunoassay kits. This bio-functionalized nMN platform showed improved biosensing capability for multiple PE-related biomarkers, including hormones and proteins. Furthermore, this painless method demonstrated efficacy as a point-of-need diagnostic platform using portable smartphone-based fluorescence microscope to obtain fluorescence images of biomarker-captured nMN arrays.


Assuntos
Técnicas Biossensoriais , Pré-Eclâmpsia , Animais , Biomarcadores , Feminino , Humanos , Imunoensaio , Pré-Eclâmpsia/diagnóstico , Gravidez , Ratos , Smartphone
15.
J Control Release ; 322: 337-345, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32246978

RESUMO

Nuclear medicine is a routine but essential clinical option for diagnostic imaging and disease treatment. Encapsulating radioisotopes in injectable biodegradable hydrogels is ideal for localizing radiation sources to target tissues or organs to achieve long-term, low-dose radiotherapy. However, difficulties in the on-site production of radioactive gels upon treatment and the unpredictable radiation level at the target region are major obstacles to their clinical use. In this study, we bypassed these limitations by developing locally injectable hydrogel microparticles based on 131I-labeled photo-crosslinkable hyaluronic acid (HA) and a microfluidic high-throughput droplet generator. This approach enabled rapid on-site production of injectable, radioactive, biodegradable (IRB) HA microgels, thus allowing their immediate therapeutic application with improved local retention and predictable radioactivity. We demonstrated the clinical utility of this comprehensive approach by preparing IRB HA microgels within 15 min and localizing them to the target tissue (rat muscle) with minimal off-target biodistribution and in vivo radioactivity that extended beyond 3 weeks.


Assuntos
Microgéis , Animais , Ácido Hialurônico , Hidrogéis , Radioisótopos do Iodo , Ratos , Distribuição Tecidual
16.
Pharmaceutics ; 12(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012667

RESUMO

Glutathione is a natural anti-aging substance that prevents the oxidation of protein thiols from reactive oxygen species. In the pharmaceutical industry, reduced glutathione (GSH) has been widely used for skin whitening due to its ability to inhibit tyrosinase. However, its poor permeability and foul odor limit its use in skin applications. Herein, we report a GSH-loaded dissolving microneedle (MN) patch prepared with hyaluronic acid (HA) that enables enhanced permeation across the skin and reduces the foul odor of GSH. HA was selected to prepare odorless GSH solutions and used for MN fabrications as a carrier of GSH. GSH-loaded MN (GSH-MN) arrays prepared from MN-forming solution containing up to 10% GSH showed good pattern uniformity and appropriate mechanical properties for insertion into the skin. The GSH-MNs with a loading capacity of 17.4% dissolve within 10 min following insertion into porcine skin and release the loaded GSH without being oxidized. This new approach combines functional biopolymers to reduce the characteristic GSH odor and advanced transdermal delivery based on MN technology to enhance skin permeation without pain. We believe this technique could expand the application of GSH in many cosmeceutical fields.

17.
Toxicol Res ; 35(4): 395-402, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636850

RESUMO

Subcutaneous adipose tissue (SAT) accumulation is a constitutional disorder resulting from metabolic syndrome. Although surgical and non-surgical methods for reducing SAT exist, patients remain non-compliant because of potential adverse effects and cost. In this study, we developed a new minimally-invasive approach to achieve SAT reduction, using a microneedle (MN) patch prepared from gelatin, which is capable of regulating fat metabolism. Four gelatin types were used: three derived from fish (SA-FG, GT-FG 220, and GT-FG 250), and one from swine (SM-PG 280). We applied gelatin-based MN patches five times over 4 weeks to rats with high-fat diet (HD)-induced obesity, and determined the resulting amount of SAT. We also investigated the histological features and determined the expression levels of fat metabolism-associated genes in SAT using hematoxylin and eosin staining and western blotting, respectively. SAT decreased following treatment with all four gelatin MN patches. Smaller adipocytes were observed in the regions treated with SA-FG, GT-FG 250, and SM-PG 280 MNs, demonstrating a decline in fat accumulation. The expression levels of fat metabolism-associated genes in the MN-treated SAT revealed that GT-FG 220 regulates fatty acid synthase (FASN) protein levels. These findings suggest that gelatin MN patches aid in decreasing the quantity of unwanted SAT by altering lipid metabolism and fat deposition.

18.
Pharmaceutics ; 11(5)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052596

RESUMO

Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs.

19.
ACS Biomater Sci Eng ; 5(10): 5150-5158, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455221

RESUMO

Antigenic peptide-delivery systems have been extensively investigated to harness the immune system for cancer therapy. Cytotoxic T-cell epitope peptide can induce an antigen-specific CD8+ T-cell response, which subsequently inhibits the growth of antigen-bearing tumors. However, there are only a few facile tailored delivery systems of antigenic peptide for effective cancer immunotherapy. Here, we developed a biodegradable microneedle patch delivering a hyaluronate (HA)-antigenic peptide conjugate for prophylactic cancer immunotherapy. Cytotoxic T-cell epitope peptide (SIINFEKL) was conjugated to HA, which was loaded into a biodegradable HA microneedle (MN) patch to efficiently deliver an antigen to the immune system in the skin. HA could act as a transdermal vaccine carrier eliciting strong immune responses by the efficient stimulation of immunocompetent cells. The HA-SIINFEKL conjugates loaded into biodegradable MNs were localized near the MN administration site, exhibiting long-term residence for more than 24 h post-administration. Remarkably, a single transdermal vaccination with the MN patch containing HA-SIINFEKL conjugates resulted in a statistically significant inhibition of tumor growth in B16 melanoma model mice by enhancing antigen-specific cytotoxic T-cell responses.

20.
Acta Biomater ; 67: 238-247, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208554

RESUMO

Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.


Assuntos
Adipócitos/metabolismo , Sistemas de Liberação de Medicamentos , Gelatina/administração & dosagem , Gelatina/farmacologia , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Administração Tópica , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/genética , Lipólise/genética , Masculino , Agulhas , Obesidade/patologia , Projetos Piloto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Gordura Subcutânea/patologia , Sus scrofa , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...